Bus Type Stepper Motor Drive SSD2505PC

User Manual V1.0

Shenzhen YAKO Automation Technology Co., Ltd.

Add: Languang Technology & Science Park, Nanshan District, Shenzhen, P.R. China.

Tel: 0755-86571196 Fax: 0755-86142266

Web: www.yankong.com

Content

1 product overview
1.1 Product overview
1.2 Product features
2 Installation dimension and terminal definitions
2.1 Installation dimension
2.2 Product part name
2.2.1 Drive terminal introduction
2.2.2 Introduction of indicator
2.3 Switch
2.3.1 Drive address setting
2.3.2 Communication baud rate setting
2.3.3 Terminal resistors setting
2.4 Communications interface
2.5 I/O terminal definitions 11
3 Input and output terminal operation
3.1 Terminal hardware description
3.2 Terminal function registers description15
4 CANopen protocol
4.1CANopen protocol overview
4.1.1 CAN Bus and CANopen17
4.1.2CANopen functional description
4.2 Drive control protocol CiA 402 24
4.2.1 CiA402 state machine
4.2.2 Work mode
4.2.3 Position mode
4.2.4 Speed mode
4.2.5 Origin mode
4.2.6 Multi-position mode
5 Object dictionary 47

5.1 Basic communication object	47
5.2 SDO (Process data object)	49
5.3 PDO (Service data object)	50
5.4 Drive description object	54
5.5 The driver subdefined object	54
6 Alarm diagnose	54
7 Version history	55
Appendix 1 CANopen Object Dictionary List	55

1 product overview

1.1 Product overview

SSD2505PC Bus type stepping motor drive added bus communication and single-axis controller functions to the traditional close-loop stepping drive. Bus communication use CAN bus interface, supports CANopen Protocol CiA301 and CiA402.

1.2 Product features

- 32 bit DSP control technology, low noise/vibration with excellent stability and low cost
- CAN-Bus, support standard CANopen protocol, mounting 127 devices the most
- Remote control and effectively slove loss of pulses in interference environment
- Users can set current, microstep and and lock current by bus; Control motor start-stop and the real-time status query
- Built-in single-axis controller and digital drive function, supporting position control, speed control and multi-position control mode
- Supports position control, speed control and multi-position mode
- 2 photoelectric isolation programmable high-speed differential

input terminal, controlled motor start and stop by external signals

- 5 programmable photoelectric isolation input terminal to receive external control signal, realize drive enable, start-stop, emergency stop, position limit and other functions
- 3 photoelectric isolation programmable output terminal, output drive status and control signals
- 16 constant-torque microstep settings, 40,000 microsteps the highest
- Smooth, accurate current control, less heat
- When step pulse stop over 200ms, automaticly halve motor current
- Excellent stability in low frequency, small microstep setting
- Input voltage range: DC24~50V
- Overvoltage, undervoltage, overcurrent protection

2 Installation dimension and terminal definitions

۲ Ο Ο 1 ОC 118 Ξ 0 0 ۲ 0 Ο U 4.5 76 3.7 8.533

2.1 Installation dimension

2.2 Product part name

Diagram 2.2 SSD2505PC side terminal schematic

Diagram 2.3 SSD2505PC top terminal schematic

2.2.1 Drive terminal introduction

Terminal		SSD2505PC	Function	
Switch			SW1-5: Drive address sets	
		SW1-8	SW6-7: Baud rate setting	
			SW8: 120 termination resistance effective	
CAN comm termi	unications	RJ45-2	CAN communication input/output terminal	
PW	'n	Power indicator	Illuminate when power on	
ALM		Alarm indicator	Over-current, cycle flashing of 1 time; Over-voltage, cycle flashing of 2 time; Under-voltage, cycle flashing of 3 time; EEPROM read-write errors, cycle flashing of 4 time; Tracking variance error, cycle flashing of 5 time;	
	PU+ PU- DR+ DR-	Differential input	High-speed digital signal input	
	X0 X1 X2 X3 X4	Single-port input	Low-speed digital signal input interface	
ЮΠ	ХСОМ	Single-port input common terminal	Compatible with common cathode and common anode	
	Y0 Y1 Y2	Single-port output	Low-speed digital signal output	
	YCOM	Single-port output common terminal	Compatible with common cathode and common anode	
A+				
Power	r A-		Two phase stapper motor wiring	
supply and	B+	Motor	Two phase stepper motor wiring	
motor	B-	terminal		
terminal	V+		Power supply input: DC24-50V	
	V-			

Table 2.1 Drive terminal

Note: for the drive terminal actual locations, please see instructions on the drive shell;

2.2.2 Introduction of indicator

Table 2.2 Indicator definitions

Name	SSD2505PC	Function
LED1 green		Power indicator
LED2 red	ALIVI/PWK	Alarm indicator

2.3 Switch

2.3.1 Drive address setting

With CAN Bus, user can simultaneously control up to 32 SSD2505PC drive. Drive address is set by 5 switches. Address setting range is 0~31, but address 0 was reserved for system. When the drive address need to be set higher than 31, PC debugging software is required, and SW1~SW5 must set to OFF.

SW5	SW 4	SW 3	SW 2	SW 1	Address
OFF	OFF	OFF	OFF	OFF	User define
OFF	OFF	OFF	OFF	ON	1
OFF	OFF	OFF	ON	OFF	2
· · · · · · · · · · · · · · · · · · ·					
ON	ON	ON	ON	OFF	30
ON	ON	ON	ON	ON	31

Table 2.3 Drive address setting

2.3.2 Communication baud rate setting

Table 2.4 Communication baud rate setting

SW7	SW6	Baud rate / Communication distances (m)
ON	ON	125 kbit/s / 500 (m) (Default)

ON	OFF	250kbit/s / 250 (m)
OFF	ON	500 kbit/s / 100 (m)
OFF	OFF	1Mbit/s / 25 (m)

Table 2.5 Customize baud rates

Customize communication baud rate register	Setting values	Baud rate / Communication distances (m)
2009h	00	125 kbit/s / 500 (m)
	01	100 kbit/s / 800 (m)
	02	50 kbit/s / 1000 (m)
	03	25 kbit/s / 1500 (m)

Note: When the communication baud rate in Table 2.4 can not meet the requirements, communication baud rate register can be customized through host computer, and SW6, SW7 should all turn to ON, the default baud rate is 125 Kbit/s;

Table 2.5 gives the longest theory communication distance for different communication baud rate.

2.3.3 Terminal resistors setting

The user can use this bit to select whether the communication end is connected with the 120 terminal resistor, which is determined according to application. Under normal circumstances, only main station and the last slave station need to be connected with 120Ω terminal resistor.

 SW8
 120Ω terminal resistance select bit

 OFF
 Invalid

2.4 Communications interface

ON

CAN communication protocol mainly describes the information transmission between devices. The definition of CAN layer is the same with Open System Interconnection (OSI) model, each layer communicate

Valid

with the same layer of another device, the actual communication occurs in adjacent two layers of each device, and the device only interconnect through the physical layer of physical media, CAN standard defines the model of data link layer of the bottom two layers and physical layer. CAN bus physical layer is not strictly defined, can use a variety of physical media such as twisted pair fiber, the most commonly used is twisted pair signal, the use of differential voltage transmission, two signal lines are called CAN_H and CAN_L, static are around 2.5V, at this time the state is logic 1, can also be called the hidden position. If CAN_H higher than CAN_L said logic 0, called the show position, this time the voltage is usually CAN_H = 3.5V and CAN_L = 1.5V, show position is priority in competition.

SSD2505PC driver provides side by side two CAN bus communication interface, communication interface using standard RJ45 socket. RJ45 socket shown in Figure 2.4 has 8 pins, including pins 1, 2 for CANH, CANL communication line, pin 5 for the common ground, other pins are not used, pay attention to the communication cable, please use shielded twisted pair , And grounding well to ensure communication stability.

Table 2.7 RJ45 PIN definition	
PIN	Definition
1	CAN_H
2	CAN_L
3	NC
4	NC
5	CAN-GND
6	NC
7	NC
8	NC

Figure 2.4 RJ45 Interface

0

2.5 I/O terminal definitions

Table 2.8 I/O terminal definitions

CN terminal pins	Signal name	Description	Function
1	PI⊥⊥	PU differential input	① (P/D mode) Pulse signal
1	I O+	+	(only for high-speed
2	PU-	PU differential input	differential PU terminal);
	10	-	② (P/D mode) Direction
3		DRdifferential input	signal(only for high-speed
		+	differential DR terminal);
4	קת	DRdifferential input	③ Origin signals;
4	DR-	-	④ Forward limit signal;
5	X0	X0 terminal input	5 Backward limit signal;
6	X1	X1 terminal input	6 Motor enable signal;
7	X2	X2 terminal input	⑦ Motor release signal;
8	X3	X3 terminal input	8 Alarm clear signal;
			(9) Function code restore to
			factory setting signal;
			(10) Stop signal;
			(11) Emergency stop signal;
			(12) Position mode control;
0	X4	V4 torminal input	(13) Speed mode control;
2		A4 terminar input	(14) JOG+ Point movement;
			(15) JOG- Point movement;
			(16) Enable signal for back to
			origin;
			(17) PT enable signal;
			(18) PIN0~4;
10	XCOM	Input common	Common terminal: compatible
10	ACOM	terminal	with common cathode/anode

11	VCOM	Output common	connection mode
11	ICOM	terminal	
12	Y0	Y 0 terminal output	① Alarm signal;
13	Y1	Y 1 terminal output	② Motor running status signals;
			③ Back to the origin finish
			signal;
14	Y2	Y 2 terminal output	④ Position reached signal;
			5 PT Mode running signal;
			⑥ POUT0~3;

Note: The drive can be controlled through the CANopen instruction or external pulse signals. In the external pulse-direction control mode, the input terminal signal: 6. Motor enable signal; 7. Motor release signal; 8. Alarm clear signal; 9. Function code restore to factory signal is valid, other input signal is invalid. Output terminal signal: 1. Alarm signal; 4. Motor running status signal; 5. Position reached signal, other output signal is invalid;

Description	Function
① Pulse signal (only for high-speed differential terminal)	External pulses signal, valid in external pulse-direction (P/D) or double-pulse control mode;
② Direction signal (only for high-speed differential terminal)	External direction signal, valid in external pulse-direction (P/D) or double-pulse control mode;
③ Origin signals	Connect with origin point sensor
④ Forward limit signal	Connect with position limit sensor
5 Backward limit signal	Connect with position limit sensor
6 Motor enable signal	Enable signal, the motor enter to locked state
⑦ Motor release signal	Release signal, the motor is released
(8) Alarm clear signal	EEPROM Read/write error, communication error recovery; Over-voltage and under-voltage automatic recovery;
(9) Function code restore to factory setting signal	Function code restore to factory settings
10 Stop signal	Motor decelerate stops;
$(\widehat{1})$ Emergency stop signal	Motor stops immediately
(12) Position mode control	Set motion according to function code 0x20~0x25;
(13) Speed mode control	Set motion according to function code 0x20~0x23;
(4) JOG+ Point movement	Set forward motion according to function code 0x20~0x23;

Table 2.9 I/O terminal functional description

	Set backward motion according to function				
(15) JOG- Point movement	code 0x20~0x23;				
(16) Enable signal for back to origin	Trigger back to origin function;				
(17) PT enable signal	Trigger multi-position mode;				
	Multi-position mode input terminals, see				
(18) PINO~PIN4	Sections 4.3 for specification;				
Input common terminal	Common terminal: compatible with common				
Output common terminal	cathode/anode connect mode				
	Signal is valid when the drive is in alarm				
1) Alarm signal	status;				
Deals to the origin finish signal	Signal is valid after the completion of back to				
	origin;				
Motor munning status signals	Signal is valid when the motor is in running				
Inotor running status signals	status;				
A Desition masched signal	Signal is valid when position reached in				
(4) Position reached signal	position mode;				
⁽⁵⁾ PT Mode running signal;	Drive is in PT mode and running				
	Multi-position mode output terminals, please				
© POUI0-2	refer to Sections 4.3 for specification;				

3 Input and output terminal operation

3.1 Terminal hardware description

SSD2505PC drive provides a 5-channel opto-isolated programmable input interface, compatible with common cathode/anode connect, 2 differential signal input.

2 differential signal internal high-speed optocoupler isolation, can be configured for external pulse-direction or double pulse control, can also be configured for ordinary differential input terminals, the input signal voltage of 5V. When input signal voltage is higher than 5V, need to add a resistor to limit current (Such as the input signal is 24V, it is needed to add 2 ~ 3K resistor). 5 (X0-X4) programmable input signal and external control terminal through the optocoupler isolation, the driver is compatible with the common cathode/anode connection, which is shown in Figure 3.1. In order to ensure the reliability of the drive internal optocoupler conduction, requiring the controller to provide the drive with current at least 10mA. The drive has been integrated into the internal optocoupler current limiting resistor, the input signal voltage is 24V, the electrical wiring diagram is as follows (when the common signal is higher than 24V, it is needed to string into a current limit resistor):

Figure 3.1 Input connection reference circuit

X0-X4 Input pulse width should be greater than 10ms, otherwise the drive may not respond normally. X0-X4 timing diagram figure 3.2 as below.

Figure 3.2 X0-X4 Timing diagram

After each power-up of the drive, X0-X4 defaults to be unspecified state, and the input signal is invalid. The user can configure the X0-X4 input function via bus.

SSD2505PC driver provides three optocoupler isolation output terminals, support NPN wiring and PNP wiring, support high/low voltage effective controller.

Figure 3.3 Y0-Y3 Output terminals internal circuit

3.2 Terminal function registers description

SSD2505PC driver can set I/O port function settings by CANopen bus protocol, and set terminal high/low voltage effective, register for control terminal function setting are shown in Table 3.1.

Table 3.1 Terminal function control registers

Index	Sub Index	Name	Introductions	Туре	Property	Default
	00	I/O terminal control	I/Oterminal control register	1116	DO	16
	00	register number	number	010	ĸŬ	10
			Bit0: PU Terminal control bit;			
			Bit1: DR Terminal control bit;			
			Bit2: Input terminal X0 control			
			bit;			
			Bit3: Input terminal X1 control			
			bit;			
			Bit4: Input terminalX2 control			
			bit;			
		Input terminal	Bit5: Input terminal X3 control			
	01	active level	bit;	U16	RW	0
			Bit6: Input terminal X4 control			
			bit;			
			Bit7~Bit15: reserved;			
			0 Default			
			0: Default;			
			1: Electric level reversal;			
			I ne drive default input terminal			
2030h		In put to main al DLI	0 Undefined			
	02	function choose	0: Undermed;	U16	RW	0
		Input torminal DB	1: Origin signals,			
	03	function shapes	2: Forward limit signal:	U16	RW	0
		Input terminal X0	4. Motor enable signal:			
	04	function choose	 Motor release signal; 	U16	RW	0
		Input terminal V1	6. Alarm clear signal:			
	05	function choose	7. Function code restore to	U16	RW	0
		Input terminal X2	factory setting signals:			
	06	function choose	8: Stop signal:	U16	RW	0
		Input terminal X2	9: Emergency stop signal:			
	07	function choose	10: Position mode forward	U16	RW	0
		Tunction choose	motion:			
			11: Position mode backward			
			motion			
			12: Speed mode forward motion:			
	08	Input terminal X4	13: Speed mode backward	U16	RW	0
		function choose	motion;	210		5
			14: Enable signal for back to			
			origin;			
			15: PT Enable signal;			

		16: PIN0;			
		17: PIN1;			
		18: PIN2;			
		19: PIN3;			
		20: PIN4;			
		Note: When using external pulse			
		control mode, set the PU and DR			
		functions to 0 to avoid accidental			
		effects.			
		Bit0: Output terminal Y0 control			
		bit;			
		Bit1: Output terminal Y1 control			
		bit;			
	Output terminal	Bit2: Output terminal Y2 control			
0C		bit;		RW	0
	active level				
		0: Default;			
		1: Electric level reversal;			
		The drive default input terminal			
		level rising edge is valid;			
0D	Output terminal Y0	0. Undefined;	U16	PW	0
00	function choose	1. Alarm signal;	010	RW	0
0F	Output terminal Y1	2. The brake signal;	U16	PW	0
	function choose	3. Drive status signals;	010	RW	0
		4. Back to the origin finished			
		signals;			
0F	Output terminal Y2	5. PT mode signal;	U16	RW	0
	function choose	6. POUT0;	016 KW		0
		7. POUT1;			
		8. POUT2;			

4 CANopen protocol

4.1CANopen protocol overview

4.1.1 CAN Bus and CANopen

CAN is the abbreviation of Controller Area Network, that is, the

controller local area network. Created by the German BOSCH company for the car monitoring and control, the application of CAN is no longer limited to the automotive industry, and also to the process industry, machinery industry, robotics, CNC machine tools, medical equipment and sensors and other fields.

Compared to other bus type, CAN Bus has the following characteristics:

(1) Multi unints control: when the bus is idle, all units can start sending messages. When multiple units begin sending at the same time, high-priority ID Unit can obtain the right to send message.

(2) Communication speed: According to the size of the entire network, you can set the appropriate communication speed, CAN bus support up to 1Mbit / s communication speed.

(3) Communication verification: CAN protocol using CRC, and can provide the corresponding error handling function to ensure the reliability of data communications.

(4) Error detection, notification and recovery: All units can detect errors, and the unit that detected the error will immediately informs all other units at the same time. At the same time, CAN bus can judge the type of error, when a continuous data error occurs on the bus, the unit which cause the fault can be isolated from the bus.

The CAN bus communication interface defined the physical and data

18

link layer functions of the CAN protocol, but it does not define the application layer. It is not complete and requires a high level protocol to define how to use the 11/29 bit identifier COB-ID and 8 bytes of data in the CAN message, therefore, SSD2505PC introduced CANopen communication protocol.

The CANopen protocol is one of the standards defined by CAN-in-Automation (CiA) and has been widely recognized shortly after its release. Especially in Europe, the CANopen protocol is considered to be a leading position in CAN-based industrial systems.

The CANopen protocol consists of a series of sub-protocols, which are divided into communication sub-protocols and device sub-protocols. The communication sub-protocol presents the concept of the object dictionary and defines the objects and parameters of the communication sub-protocol area in the object dictionary. Each CANopen device must adhere to the communication sub-protocol at least, and on the basis of the communication sub-protocol, the device sub-protocol is expanded according to the field of different industry or equipment applications. CiA301 is the most basic communication sub-protocol, which regulates the CANopen network framework and defines the communication and behavioral specifications between different CANopen devices. The SSD2505PC supports the CiA 301 communication sub-protocol and the CiA 402 device sub-protocol for the drive.

4.1.2CANopen functional description

1. Object dictionary

The object dictionary (OD: Object Dictionary) is the core concept of CANopen, and every CANopen device in the network has an object dictionary. An object dictionary is a collection of ordered data objects that describe all communication and device parameters for the device and determine the position in object dictionary by a 16-bit index and an 8-bit subindex. The contents of the SSD2505PC object dictionary are described in detail in Appendix 1.

2. Message format

As an application layer protocol for the CAN bus, the CANopen protocol mainly defines the arbitration field (11 bits) and the data field (up to 8 bytes) in the CAN message.

Among them, in the CANopen protocol, the 11-bit arbitration bits are divided into the upper 4-bit function code (Function Code) and the lower 7-bit node address (Node-ID), called COB-ID (Communication Object Identifier). The structure of the CANopen identifier is shown in the following table. The node address ranges from 1 to 127.

Table 4.1CANopen identifier format

CANopen predefined master / slave the connect set

10	9	8	7	6	5	4	3	2	1	0
	Functio	on Code					Node-ID	1		

SSD2505PC supports the following types of CANopen messages:

- PDO (Process Data Object) messages
- SDO (Service Data Object) messages
- NMT (Network Management Object) messages
- SYNC (Synchronisation Object) messages
- EMCY (Emergency Object) messages

The following table shows the function codes of the various messages predefined in the communication sub-protocol CiA301 and the corresponding COB-ID.

and the function code of the communications objects and COD in								
Object	Function Code	COB-ID						
NMT	0000	Oh						
SYNC	0001	80h						
PDO1 (TX)	0011	181h-lFFh						
PDO1 (RX)	0100	201h-27Fh						
PDO2 (TX)	0101	281h-2FFh						
PDO2 (RX)	0110	301h-37Fh						
PDO3 (TX)	0111	381h-3FFh						
PDO3 (RX)	1000	401h-47Fh						
PDO4 (TX)	1001	481h-4FFh						
PDO4 (RX)	1010	501h-57Fh						
SDO (TX)	1011	581h-5FFh						
SDO (RX)	1100	601h-67Fh						
Heart Beat	1110	701h-77Fh						

Table 4.2 The function code of the communications objects and COB-ID

3. Service data objects (SDO)

SDO messages are used to access the object dictionary of the device and configure the devices in the CANopen network. The SDO communication method is based on the client / server model, that is, the messages sent must be confirmed by the receiver. A visitor is called a client, and devices that object dictionary is accessed and responds to read and write request is called a server. The protocol specifies that read the value of the parameter in the object dictionary is called Upload, and change the value of the modified parameter is called Download.

SSD2505PC support fast SDO protocol and ordinary SDO protocol two transmission methods described in CiA301.

4. Process data objects (PDO)

SDO protocol are used for the operation of the object dictionary, processing low real-time requirement data. High real-time requirement data is usually transmitted through the PDO.

The PDO communication method is based on the Producer / Consumer model, where data is sent from one device (producer) to another device (consumer) or many other devices (broadcast mode) and it is transmitted without acknowledgment mode, the data transfer is limited to 1 to 8 bytes. The CANopen device completes reception or transmission by describing two parameters of the PDO: Communication Parameter and Mapping Parameter.

SSD2505PC supports 4 RPDO and 4 TPDO, and described the PDO communication port communication parameters and mapping parameters according to CiA 301 sub-protocol.

5. Network management object (NMT)

NMT network management based on master / slave architecture, the master station can control the slave state machine through the NMT message. When the CANopen device is powered on or reset, the device first enters the Initialization state. After the program is initialized, the device will automatically send a Boot-Up message and then enter the Pre-Operational status automatically. After that, the slave switches different states according to the NMT messages sent from the master station.

6. Synchronization object (SYNC)

The synchronization object (SYNC) provides a reference clock for the network to synchronize devices in the network. SYNC belongs to the producer / consumer communication relationship, the SYNC object is sent by a SYNC producer, and all other devices in the network can receive SYNC. Assume that the device in the network supports synchronous PDO function, then you can use SYNC to achieve multiple devices action at the same time. The COB-ID of the SYNC messages are 0x80, which has a high priority to ensures normal transmission of SYNC. In addition, SYNC packets may not contain data to reduce the amount of data of SYNC messages.

7. Emergency object (EMCY)

The device can report its own internal faults to the CANopen

network via the emergency object (EMCY). EMCY belongs to the producer/consumer communication model, and all devices in the network can consume the message. EMCY messages occupy all 8 bytes of data. Among them, byte 0 and byte 1 are for the error code, the error code corresponds to a variety of error types appears in the device. Byte 2 is the error register, its value is stored in the object dictionary 1001h unit, and corresponds to the various types of malfunction that occured. The contents of byte 3 to byte 7 are manufacturer-defined error fields that can be a specific type of failure. Through the EMCY object, the master station can easily grasp the specific situation of the failure from the slave station.

4.2 Drive control protocol CiA 402

4.2.1 CiA402 state machine

The CiA402 protocol defines the standard state machine for motion control equipment, as well as various operating modes, and their definition in object dictionaries.

The state machine describes the state of the device and the possible drive control sequence. Each step state represents a specific internal or external behavior, and the status of the device also determines which commands can be received.

Figure 4.1 Drive state machine

Machine states corresponding to the following table:

Table 4.3 State machine description

State name	Description				
	Device is powered on, the drive has been initialized,				
Not Ready to Switch on	and performs an internal self-test, the brake is				
	activated.				
	CANopen communication has started, you can use				
Switch on Disabled	SDO Communications services to set drive parameter				
Ready to Switch on	Drive continue being set, motor no excitation				
	The drive motor is ready and the output stage voltage				
Switched on	on in this state will activate in the end, but the drive				
	function can not be performed				
	Drive motor is enabled, the drive is in normal				
Operation Enable	operation, and the motor is controlled according to				
	the control mode				
Quial: Stop Active	The quick stop function is activated, the drive				
Quick Stop Active	function is activated, and the motor is started				
	The drive detects that an alarm has occurred and				
Fault Reaction Active	stops according to the setting method. The motor is				
	still enabled				
Egylt	An error occurs, allows to change the drive				
Fault	parameters				

The drive state machine is controlled by bits 0 to bit 3 and bit 7 of

Command		Сс	Switch state			
Commanu	Bit7	Bit3	Bit2	Bit1	Bit0	Switch state
Shutdown	0	Х	1	1	0	2,6,8
Switchon	0	0	1	1	1	3
Switch on + Enable operation	0	1	1	1	1	3+4
Disable voltage	0	Х	Х	0	Х	7, 9, 10, 12
Quick stop	0	Х	0	1	Х	7, 10, 11
Disable Operation	0	0	1	1	1	5
Enable Operation	0	1	1	1	1	4,16
Fault reset	0→1	Х	Х	Х	Х	15

the control word (object 6040h), as described in the following table:

Table 4.4 Control word the switch state

Each state in the state machine can be displayed by bit0 ~ bit3, bit5,

bit6 of the status word (object 6041h). The details are as follows:

Table 4.5 Status word the switch state

		Status	Statuc			
Bit6	Bit5	Bit3	Bit2	Bit1	Bit0	Status
0	Х	0	0	0	0	Not ready to switch on
1	Х	0	0	0	0	Switch on disabled
0	1	0	0	0	1	Ready to switch on
0	1	0	0	1	1	Switched on
0	1	0	1	1	1	Operation enabled
0	0	0	1	1	1	Quick stop active
0	Х	1	1	1	1	Fault reaction active
0	Х	1	0	0	0	Fault

4.2.2 Work mode

CANopen sets the drive operating mode with the object 6060h (Mode of Operation) and reflects the current operating mode status of the drive via the object 6061h (Mode of operation display). SSD2505PC currently supports four operating modes: Position Mode, Speed Mode, Origin Mode, Multi- Position Mode. The first three kinds of work modes are described in detail in CiA402, and the multi-position mode is factory custom mode.

Index	Sub index	Name	Туре	Attr.	PDO map	Parameter range	Default value
6060h	00	Working mode	18	RW	YES	 -1: Multi- Position Mode 0: Undefined 1: Position Mode 3: Speed Mode 6: Origin Mode 	0

Table 4.5 Drive working mode

4.2.3 Position mode

1. Process description

The position mode is realized by trapezoidal acceleration and deceleration curve. The user can set the starting speed (address 200E0010h), the maximum speed (address 60810010h), the acceleration time (address 60830010h), the deceleration time (address 60840010h), the total pulse number (address 607A0020h) parameters by bus to achieve precise position control. The trapezoidal acceleration / deceleration curve is shown in Figure 4.2.

Figure 4.2 Position mode acceleration and deceleration curve

When the total number of pulses set by the user is too little, the motor may need to be decelerated before accelerating to the maximum speed (not reach the set maximum speed in actual operation). The speed curve is shown in Figure 4.3. The solid line in the figure shows the actual running curve of the motor, and the dotted line is the curve to be accelerated to the set maximum speed. The total number of theoretical pulses is the minimum total number of pulses calculated according to the user setting parameters (start speed, maximum speed, acceleration time, deceleration time). When the total number of pulses set by the user is less than the total number of theoretical pulses, the motor will run as the solid line shown in Figure 4.3.

Di	ctionary	content	of rel	lated	l ob	jects:

Index	Sub index	Name	Туре	Atrr.	Set Range	Setting
6060h	00	Working mode	18	RW	-1,1,3,6	1

200Eh	00	Starting speed	U16	RW	2-300r/min	10 r/min
607Ah	00	Total number of pulses	I32	RW	-1000000~ 1000000	5000
6081h	00	Maximum speed	U16	RW	5-3000 r/min	120 r/min
6083h	00	Acceleration time	U16	RW	0-2000ms	100ms
6084h	00	Deceleration time	U16	RW	0-2000ms	100ms

2. Control word and status word

The control word in position mode is controlled by bit4 ~ bit6, bit8:

Bytes	Name	Value	Description		
D:+4	Now set point	0	No assuming target position		
B114	New set-point	1	Assuming target position		
		0	Complete current position and start next		
Bit5	Change set immediately	0	position		
		1	Stop current position and start next position		
D:+6	abs/rel	0	Target position is an absolute value		
B110		1	Target position is an relative value		
		0	Terminate present position		
Bit8	Halt	1	Deceleration to stop by setting the		
		1	deceleration rete		

Note: According to the above table, the absolute position motion command control word is sent as 0x0F-> 0x1F, relative position motion command control word is sent as 0x4F-> 0x5F;

Status word bit10, bit15 shows the drive status:

Bytes	Name	Description	
		0	Halt=0: The target location is not reached;
Bit10	Targetreached	0	Halt=1: Shaft deceleration;
		1	Halt=0: The target location is reached;
			Halt=1: Shaft speed is 0;
D:415	David	0	Not in place
Bit15	Pend	1	In place

3. Example

For example, the motor according to the parameters (starting speed 10r / min, acceleration time 100ms, deceleration time 100ms, maximum

speed 60r / min, the total number of pulses 5000) to realize relative movement.

Assuming that the drive slave station number is 1, the CANopen control command is as follows:

Master	Master Slave		Description
00 01 00	(Depending on PDO	Initialize the NMT state	Initialize the NMT state
00: 01:00	mapping)	machine	machine
CO1 2D 40 CO 00 00 00 00 00	581 (0.40, (0.00, 00, 00, 00, 00, 00, 00, 00, 00, 00	Initialize the server state	Initialize the server
601: 2B 40 60 00 00 00 00 00 00	581: 60 40 60 00 00 00 00 00 00	machine	state machine
CO1 2D OF 20 00 05 00 00 00	591 (0 OE 20 00 00 00 00 00	Sets the starting speed	Sets the starting aread
601: 2B 0E 20 00 05 00 00 00	581: 60 0E 20 00 00 00 00 00	5r/min	Sets the starting speed
601: 2B 83 60 00 64 00 00 00	581: 60 83 60 00 00 00 00 00 00	Set acceleration time 100ms	Set acceleration time
CO1 2D 84 CO 00 C4 00 00 00	5 81 (0.84 (0.00.00.00.00.00.00.00.00.00.00.00.00.0	Set the deceleration time	Set the deceleration
001: 2B 84 00 00 04 00 00 00	581: 00 84 00 00 00 00 00 00 00	100ms	time
601 3B 81 60 00 2C 00 00 00	581 60.81 60.00 00 00 00 00	Set the maximum speed	Set the menimum aread
601: 2B 81 60 00 3C 00 00 00	581: 00 81 00 00 00 00 00 00	60r/min	Set the maximum speed
	581 (0.74 (0.00.00.00.00.00.00	Set the number of pulses	Set the number of
001: 25 /A 00 00 88 15 00 00	581: 00 /A 00 00 00 00 00 00 00	5000	pulses
601: 2F 60 60 00 01 00 00 00	581: 60 60 60 00 00 00 00 00 00	Switching working mode	Position mode
601: 2B 40 60 00 06 00 00 00	581: 60 40 60 00 00 00 00 00 00	Switch the drive status	
601: 2B 40 60 00 07 00 00 00	581: 60 40 60 00 00 00 00 00 00	machine	Switch the drive status
601: 2B 40 60 00 0F 00 00 00	581: 60 40 60 00 00 00 00 00 00	(Reference 402 Protocol)	machine
	591 60 40 60 00 00 00 00 00	Send relative movement	
601: 2B 40 60 00 4F 00 00 00	581: 60 40 60 00 00 00 00 00 00	command 1	Send relative
(01 OD 40 (0 00 CE 00 00 00	5 01 (0.40, c0.00, 00, 00, 00, 00, 00, 00, 00, 00, 00	Send relative movement	movement command
601: 2B 40 60 00 5F 00 00 00	581: 60 40 60 00 00 00 00 00 00	command 2	

4.2.4 Speed mode

1. Process description

The acceleration curve of the speed mode is shown in Figure 4.4. Unlike the position mode, the speed mode only requires three parameters of the initial speed (address 200E0010h), the maximum speed (address 60810010h), the acceleration time (address 60830010h). The motor accelerate to the maximum speed according to the three parameters, then running in constant speed according to the set maximum speed.

Figure 4.4 Speed mode accelerate curve

Dictionary content of related	objects:
-------------------------------	----------

Index	Sub index	Name	Туре	Atrr.	Set Range	Setting
6060h	00	Work mode	18	RW	-1,1,3,6	3
60FFh	00	Maximum speed	I16	RW	-3000-300 0r/min	0
6083h	00	Acceleration time	U16	RW	0-2000ms	100ms
6084h	00	Deceleration time	U16	RW	0-2000ms	100ms

2. Control and status word

The control word in speed mode is controlled by bit 8:

Bytes	Name	ame Value Description	
Bit8	Halt	0	Execute movement
		1	Stop movement

Status word bit10, bit12 shows the drive status:

Bytes	Name	Value	Description	
		0	Halt=0: The target position is not reached;	
Bit10	Targetreached	0	Halt=1: Shaft deceleration;	
		1	Halt=0: Target location reached;	
			Halt=1: Shaft speed is 0;	
Bit12	Speed	0	The speed is not 0;	

1 The speed is 0;

3. Example

For example, the motor rotate according to the parameters (starting speed 10r / min, acceleration time 100ms, deceleration time 100ms, maximum speed 60r / min).

Assuming that the drive slave station number is 1, the CANopen

control	command	is	as	foll	lows:
0111101	communa	10	uo	1011	

Master	Master Slave		Description	
00 01 00	(Depending on PDO	Initialize the NMT state	Initialize the NMT state	
00: 01:00	mapping)	machine	machine	
601, 3P 40 60 00 00 00 00 00	581. 60.40.60.00.00.00.00.00	Initialize the server state	Initialize the server	
001: 2B 40 00 00 00 00 00 00 00	581: 00 40 00 00 00 00 00 00	machine	state machine	
601. 2P 0E 20 00 05 00 00 00	581. 60 0E 20 00 00 00 00 00	Sets the starting speed	Sate the starting speed	
001: 2B 0E 20 00 05 00 00 00	581: 00 0E 20 00 00 00 00 00	5r/min	Sets the starting speed	
601: 2B 83 60 00 64 00 00 00	581: 60 83 60 00 00 00 00 00 00	Set acceleration time 100ms	Set acceleration time	
601, 3P 84 60 00 64 00 00 00	581. 60.84.60.00.00.00.00.00	Set the deceleration time		
001: 2B 84 00 00 04 00 00 00	381: 00 84 00 00 00 00 00 00	100ms	time	
601 3D 81 60 00 2C 00 00 00	581 60.81 60.00 00 00 00 00	Set the maximum speed	Set the maximum aread	
001: 2B 81 00 00 5C 00 00 00	381: 00 81 00 00 00 00 00 00	60r/min	Set the maximum speed	
601: 2F 60 60 00 03 00 00 00	581: 60 60 60 00 00 00 00 00 00	Switching working mode	Speed mode	
601: 2B 40 60 00 06 00 00 00	581: 60 40 60 00 00 00 00 00 00	Switch the drive status		
601: 2B 40 60 00 07 00 00 00	581: 60 40 60 00 00 00 00 00 00	machine	Switch the drive status	
601: 2B 40 60 00 0F 00 00 00	581: 60 40 60 00 00 00 00 00 00	(Reference 402 Protocol)	macmne	

4.2.5 Origin mode

1. Process description

SSD2505PC currently has two origin modes. In the back to origin process, it need to use the position limit signal or the origin signal, before using the origin function, please select the position limit signal or the origin signal function of the input terminal according to working mode. At the same time, the origin function can be triggered by an external I/O or triggered by a communication command. If an external I/O trigger is used, an input terminal must be set as a "origin enable" function.

1) Position limit + origin mode

After receiving the "back to origin enable" command, the drive starts to move with the "back to origin speed (60990110h)" and "back to origin acceleration / deceleration time (609A0010h)". When the rising edge of the origin signal is encountered, motor will decelerate and stop by the setting of "acceleration and deceleration time (609A0010h)", and then motor will reverse its movement. After that, the motor will slowdown to stop after received the decline in the origin signal. After the completion of stop, motor will apply forward movement by the setting of "return to the original query speed (60990210h)". And stop immediately when the rise of the origin signal received. If the "back to origin compensation value (607C0010h)" in the function code is not zero, a certain distance will be adjusted according to the compensation value.

If it's not needed to connect this signal, there's no need for position limit.

2) Position limit mode + compensation

After receiving the "back to origin enable" command, the drive starts to move with the "back to origin speed (60990110h)" and "back to origin acceleration / deceleration time (609A0010h)". When the rising edge of the origin signal is encountered, motor will decelerate and stop by the setting of "acceleration and deceleration time (609A0010h)", and then motor will reverse its movement. After that, the motor will slowdown to stop after received the decline in the origin signal. After the completion of stop, motor will apply forward movement by the setting of "return to the original query speed (60990210h)". And stop immediately when the rise of the origin signal received. If the "back to origin compensation value (607C0010h)" in the function code is not zero, a certain distance will be adjusted according to the compensation value.

Figure 4.6 Position limit + compensation back to origin workflow

Related object dictionary content:

Index	Sub index	Name	Туре	Atrr.	Set range	Setting
6060h	00	Work mode	18	RW	-1,1,3,6	6
6098h	00	Back to origin mode	U8	RW	0~3	0

	00	Sub index number	U16	RO	-	2
6099h	01	Back to origin speed	U16	RW	5-3000r/mi n	120 r/min
	02	Back to origin query speed	U16	RW	5-300r/min	60 r/min
609Ah	00	Back to the origin accelerate / decelerate time	U16	RW	30-2000m s	100ms
607Ch	00	Compensation value for back to origin	132	RW		0

2. Control and status word

The control word in the back to origin mode is controlled by bit4,

bit8:

Bytes	Name	Value	Decription
		0	Back to origin not activate
D:+4	Back to origin operation	0→1	Back to origin start
Bit4 start	1	Back to origin activate	
		1→0	Back to origin stop
D:+9	Halt	0	Apply bit4 command
סווס	Halt	1	Stop shaft by back to origin decelerate rate

Note: According to the table, back to origin command control word sent as 0x0F-> 0x1F;

Status word bit8, bit10 shows the drive status:

Bytes	Name	Value	Decription		
D:+9	Deals to origin finished	0	Back to origin not finished		
БПО	back to origin misned	1	Back to origin finished successfully		
Bit10	Position reached	0	Halt=0: Back to origin position not reached;		
Bit10 Position reached		1	Halt=1: Shaft decelerate, Halt=0: Back to origin position reached; Halt=1: Shaft speed zero;		

3. Example

To complete the back to origin work, select the positive position limit + origin mode for the back to origin, back to origin speed 120r / min, back to origin query speed of 60r / min, acceleration and deceleration time 100ms, the origin is not compensated.

Assuming that the drive slave station number is 1, the CANopen

control instruction is as follows:

Master station	Slave station	Function	Description
00. 01.00	(Depending on BDO monning)	Initialize the NMT state	Initialize the NMT state
00: 01:00	(Depending on FDO mapping)	machine	machine
601. 2B 40 60 00 00 00 00 00	581. 60.40.60.00.00.00.00.00	Initialize the server state	Initialize the server
001: 28 40 00 00 00 00 00 00	581: 00 40 00 00 00 00 00 00	machine	state machine
601: 2B 98 60 00 00 00 00 00 00	581: 60 98 60 00 00 00 00 00 00	Set back to origin mode 0	Set back to origin
601 2D 00 60 00 78 00 00 00	581 60.00 60.00.00.00.00.00	Set back to origin speed	Sat healt to origin around
001: 2B 99 00 00 78 00 00 00	99 80 00 78 00 00 00 581: 80 99 80 00 00 00 00 00 00		Set back to origin speed
601, 2P 00 60 01 2C 00 00 00	581. 60.00 60.01.00.00.00.00	Set back to origin query	Set back to origin query
001: 2B 99 00 01 3C 00 00 00	581: 00 99 00 01 00 00 00 00	speed 60r/min	speed
601, 2P 0A 60 00 64 00 00 00	581. 60.04.60.00.00.00.00.00	Set acceleration /	Set acceleration /
001: 2B 9A 00 00 04 00 00 00	581: 00 9A 00 00 00 00 00 00	deceleration time 100ms	deceleration time
601: 2F 60 60 00 06 00 00 00	581: 60 60 60 00 00 00 00 00 00	Swith work mode	Back to origin mode
601: 2B 40 60 00 06 00 00 00	581: 60 40 60 00 00 00 00 00 00	Switch the drive status	Switch the drive status
601: 2B 40 60 00 07 00 00 00	581: 60 40 60 00 00 00 00 00 00	machine	Switch the drive status
601: 2B 40 60 00 0F 00 00 00	581: 60 40 60 00 00 00 00 00 00	(Reference 402 Protocol)	machine
601, 2P 40 60 00 1E 00 00 00	581. 60.40.60.00.00.00.00.00	Sent back to origin	Sent back to origin
001: 2B 40 00 00 IF 00 00 00	581: 00 40 00 00 00 00 00 00	command	command

4.2.6 Multi-position mode

The multi-position mode function is a way of combining a plurality of position segments in a certain order, triggering a motion by a bus command or an external signal to complete a series of positional actions. This function can also be regarded as a combination of the position movements described in section 4.1, except that the user can store parameters of several segment positions in the EEPROM, such as acceleration / deceleration time, total pulse number, etc. To enable these positions section, user only need to provide a trigger signal to complete the work, the work process is described in Figure 4.7.

Figure 4.7 Multi-position working mode

1. Position segment parameters

As described above, the user can store the parameters describing a position segment in the EEPROM. Currently, the SSD2505PC supports up to 16 position segments. This section describes the required parameter sets for describing a position segment.

Parameter group describing a position segment:

Parameter name	Function description		
JPT	The number of next segment after action completed		
Total number of pulses (PU)	The same with in position mode		
Running speed (SPEED)	The same with in position mode		
Acceleration/deceleration time (ACCDEC)	The same with in position mode		
Wait time (WAIT)	The time interval after the end of current action and the start of next segment		
Direction (DIR)	The movement direction of the current segment		
Output terminal settingsvalue(PTOUT)	The enable output terminal status betweent the beginning and the end of this segment		

Corresponding CANopen object dictionary content is as follows:

Index	Sub index	Name	Туре	Atrr.	Set range	PDO mapping	Default
6060h	00	Work mode	18	RW	-1,1,3,6	YES	-1
2031h	00	Multi position operation mode	U16	RW	0~1	NO	0

2032h	00	Multi position loop mode	U16	RW	0~1	NO	0
20225	00	Register number	U16	RO	-	NO	16
205511	01~16	Segment JPT number	U16	RW	1~16	NO	0
2034h	00	Register number	U16	RO	-	NO	16
	01~16	PT position segment total number of pulses (segment 1~ segment 16) Refer to 607Ah	U32	RW	Refer to 607Ah	NO	0
	00	Register number	U16	RO	-	NO	16
2035h	01~16	PT position segment speed (segment 1~ segment 16) Refer to 6081h	U16	RW	Refer to 6081h	NO	0
	00	Register number	U16	RO	-	NO	16
2036h	01~16	PT position segment acceleration / deceleration time (segment 1~ segment 16) Refer to 6083h, 6084h	U16	RW	Refer to 6083h 6084h	NO	0
	00	Register number	U16	RO	-	NO	16
2037h	01~16	PT position segment direction (segment 1~ segment 16) Refer to 200Eh	U16	RW	Refer to 200Eh	NO	0
	00	Register number	U16	RO	-	NO	16
2038h	01~16	PT position segment wait time (segment 1~ segment 16)	U16	RW	0-65535ms	NO	0
2039h	00	Register number	U16	RO	-	NO	16

	Output terminal					
	settingsvalue at the					
01 16	start and end of	1116	DW	0 16	NO	0
01~10	segment	010	KW	0~10	NO	0
	(segment 1~					
	segment 16)					

Among the parameters listed above, "the total number of pulses, the running speed, acceleration / deceleration time, running direction" is the same as they are in the position mode. "Wait time" indicates the time interval between two motion segments; "The output terminal setting value at the beginning and end of the segment movement" refers to the output terminals of POUT0 ~ POUT2. If the user configures the Y0 ~ Y2 output terminal functions as POUT0 ~ POUT2 by software, the output status can be controlled by the above parameters (at least one of the Y0 ~ Y2 is configured as the POUT function).

Control word of multi-position mode control through the bit8, bit11:

Bytes	Name	Value	Description	
		0	Apply bit8 command	
Bit8	Hall	1	Stop shaft	
D:+11	MultiPostionStart	0	-	
Bitll		1	Enable PT segment	

2. Basic mode

Multi-position mode has two modes of operation which are basic model and trigger mode. The similarity of the two modes of operation is the need to set at least one segment for movement, the main difference is the number of triggers. The basic mode only needs to be triggered once after the parameter group is set in each position, and the set position segment can be finished according to the parameters. No other operation is needed. See the following example:

Example: Set 3 position segments, position segment 1, position segment 5, position segment 3. Run position 1 first, jump to run position 5 after interval 500ms, then jump to run position 3 after interval 1000ms, then end of the action, and request:

- Position segment 1 total number of positive running pulses 5000, speed 60r / min acceleration and deceleration time 300ms; at the beginning POUT0 = 1; at the end of POUT1 = 1;
- (2) Position section 5 reversely run the total number of pulses 2000, speed 120r / min, acceleration and deceleration time 100ms; at the beginning POUT1 = 1; at the end of POUT0 = 1, POUT1 = 1;
- (3) Position segment 3 total number of positive running pulses 3000, speed 240r / min, acceleration and deceleration time 200ms; at the beginning POUT0 = 1; POUT1 = 1; at the end of POUT0 ~ 3 = 1;

The motion process is shown in Figure 9.

Figure 4.8 Three segments of motion process

To complete movement described above, need to do the following:

(1) Y0 ~ Y3 output terminal function is set to POUT0 ~ POUT3, the

specific function code operation as follows:

Function code address	Function code name	Write data
20300D10h	Output terminal Y0 function selection	5
20300E10h	Output terminal Y1 function selection	6
20300F10h	Output terminal Y2 function selection	7
20301010h	Output terminal Y3 function selection	8

(2) And set the parameters as follows:

Function code address	Function code name	Write data
20330110h	JPT number of position segment 1	5
20340110h	The total pulses of segment	5000
20350110h	The speed of segment	60
20360110h	The deceleration and accelerate time of segment	300
20370110h	The direction of segment	0
20380110h	The wait time of segment	500
20390110h	Output terminal status	0201h
20330510h	JPT number of position segment 5	5
20340510h	The total pulses of segment	2000
20350510h	The speed of segment	120
20360510h	The deceleration and accelerate time of segment	100
20370510h	The direction of segment	1
20380510h	The wait time of segment	1000
20390510h	Output terminal status	0302h
20330310h	JPT number of position segment 3	0
20340310h	The total pulses of segment	3000
20350310h	The speed of segment	240
20360310h	The deceleration and accelerate time of segment	200
20370510h	The direction of segment	0
20390310h	Output terminal status	0F03h

(3) Send the PT motion command to trigger the movement to observe

the motor movement.

Master	Slave	Description	
201: 0F 08	-	Cond anatoting command	
601: 2B 40 60 00 0F 08 00 00	601: 60 40 60 00 00 00 00 00 00	Send operating command	

The above describes the work process of basic model, the other need to understand the following:

(1) Currently SSD2505PC support 16 PT segment;

(2) If there's no need of POUT output terminal function, simply configure Y0 ~ Y2 as other function, or set the parameter PTOUT to 0.

(3)The above-mentioned motion trigger has two kinds of ways: the bus instruction trigger and the external input signal trigger; for the external input signal trigger, take any input terminal (PU, DR, X0~X4) configured as "PT enable signal" function, give an active voltage level to trigger motion.

(4) If there is no other position after the last segment, you need to set the JPT parameter to 0, after the completion of the last segment, drive will exit multi-position mode.

(5) In the multi-position mode, the position mode and speed mode are disabled, user can exit the multi-position mode through the stop command or emergency stop command, or wait for the self-exit of multi-position mode after the completion;

3. Trigger mode

The former chapter describes the work process of the basic mode,

42

this chapter describes the the work process of trigger mode. Basic mode only need to trigger once, but the trigger mode needs to trigger once for each of the set movement. That is, after the completion of each section of the movement, a trigger command is needed, but when to trigger is decided by user.

In addition, the basic mode selects the next segment by the JPT parameter. The trigger mode can set next segment by the communication command or the external input terminal in addition to the JPT parameter. PT mode can use PIN0 ~ PIN4 input terminals, PIN0 ~ PIN4 terminal sorted by binary from low to high count. As follows:

PIN4	PIN3	PIN2	PIN1	PIN0	Position segment
0	0	0	0	0	Not choose
0	0	0	0	1	1
0	0	0	1	0	2
0	0	0	1	1	3
0	0	1	0	0	4
0	0	1	0	1	5
0	0	1	1	0	6
0	0	1	1	1	7
0	1	0	0	0	8
0	1	0	0	1	9
0	1	0	1	0	10
0	1	0	1	1	11
0	1	1	0	0	12
0	1	1	0	1	13
0	1	1	1	0	14
0	1	1	1	1	15
1	0	0	0	0	16

Table 14 Input terminal select position segment

Note: When using the PIN terminal for segment selection, it needs to be valid for 5ms before and at the end of the PT enable signal.

Specific examples are as follows:

Example: Set 3 position segments, position segment 1, position segment 5, position segment 3, request first position 1, then trigger jump run position 5, then trigger jump to run position 3, and then end the action, and request:

- Position segment 1 total number of running pulses 5000, speed 60r / min acceleration and deceleration time 300ms; at the beginning POUT0 = 1; at the end of POUT1 = 1;
- (2) Position section 5 run the total number of pulses 2000, speed 60r
 / min, acceleration and deceleration time 100ms; at the beginning
 POUT1 = 1; at the end of POUT0 = 1, POUT1 = 1;
- ③ Position segment 3 total number of running pulses 3000, speed 60r / min, acceleration and deceleration time 200ms; at the beginning POUT0 = 1; POUT1 = 1; at the end of POUT0 ~ 3 = 1;
 The movement process is shown in Figure 4.9.

Figure 4.9 Three segment working progess

To complete movement described above, need to do the following:

(1) Y0 ~ Y3 output terminal function is set to POUT0 ~ POUT3, the specific function code operation as follows:

Function code address	Function code name	Write data
20300D10h	Output terminal Y0 function selection	5
20300E10h	Output terminal Y1 function selection	6
20300F10h	Output terminal Y2 function selection	7
20301010h	Output terminal Y3 function selection	8

(2) And set the parameters as follows:

Function code address	Function code name	Write data
20330110h	JPT number of position segment 1	5
20340110h	The total pulses of segment	5000
20350110h	The speed of segment	60
20360110h	The deceleration and accelerate time of segment	300
20370110h	The direction of segment	0
20380110h	The wait time of segment	500
20390110h	Output terminal status	0201h
20330510h	JPT number of position segment 5	5
20340510h	The total pulses of segment	2000
20350510h	The speed of segment	120
20360510h	The deceleration and accelerate time of segment	100
20370510h	The direction of segment	1
20380510h	The wait time of segment	1000
20390510h	Output terminal status	0302h
20330310h	JPT number of position segment 3	0
20340310h	The total pulses of segment	3000
20350310h	The speed of segment	240
20360310h	The deceleration and accelerate time of segment	200
20370510h	The direction of segment	0
20390310h	Output terminal status	0F03h

(3) Send PT motion command to trigger the motion, and the motor completes the position segment 1.

Mas	ster	Description	
201:	0F 08	-	Cand an anting a summary d
601: 2B 40 60	00 0F 08 00 00 601	: 60 40 60 00 00 00 00 00 00	Send operating command

(4) Send PT motion command to trigger the motion, and the motor completes the position segment 5.

Master	Slave	Description
201: 0F 08	-	Sand anarating command
601: 2B 40 60 00 0F 08 00 00	601: 60 40 60 00 00 00 00 00 00	Send operating command

(5) Send PT motion command to trigger the motion, and the motor completes the position segment 3.

Master	Slave	Description
201: 0F 08	-	
601: 2B 40 60 00 0F 08 00 00	601: 60 40 60 00 00 00 00 00 00	Send operating command

The above describes the work process of the trigger mode, need to pay attention to several points:

(1) The triggering mode in the above example is triggered by command; it can also be triggered by an external input signal: any input terminal (PU, DR, X0 ~ X5) can be configured as "PT enable signal" to trigger motion.

(2) In the above example, the next position is selected by the JPT parameter, and it can also be selected by the external input terminal.

When using the external terminal to select the next position segment:

- First need to set the X0 ~ X2 input terminal function to PIN0 ~ PIN2;
- (2) The PIN0~PIN2 status bits are set before each trigger command. If the position segment 5 is selected, the controller needs to input PIN2 = 1, PIN1 = 0 and PIN0 = 1, and then send a trigger command to complete the motion of position 5.

5 Object dictionary

5.1 Basic communication object

1. Object 1000h: Device type

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
1000h	0	Device type	This device supports the CIA301, CIA402 protocol	U32	RO	NO	0x000401 92

1000h object describes the device type: bit0 ~ bit15: device support

protocol: 402; bit16 ~ bit23: drive type: stepper driver (0x04);

2. Object 1001h: Error register

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mappi ng	Default
1001h	0	Error register	Drive current error status	U8	RO	NO	0

The 1001h object describes the current state of the drive's error, and

the bits are defined as follows:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Manufacturer-defined	Reserved	Sub-protocol	Communication	Temperature	Voltage	Current	General

3. Object 1003h: Pre-defined Error Field

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mappi ng	Default
1003h	0	Sub-Index number	Sub-Index number	U8	RO	NO	0
	1-4	Error memory	The drive recently caused an emergency message error, supporting five error storage units	U32	RO	NO	0

The 1003h object describes a predefined error memory to store the error that occurred when the drive was operating. The SSD2505PC

supports a total of four levels of storage and stores the last four errors. In addition, writing "0" to subindex 0 clears the error history, writing other values is not accepted.

4. Object 1005h:	COB-ID SYNC message
------------------	---------------------

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mappi ng	Default
1005h	0	Synchronous message COB identifier	Synchronous message COB identifier	U32	RW	NO	0x80

The 1005h object describes the identifier of the SYNC

synchronization message.

5. Object 1006h: Communication Cycle Period

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mappi ng	Default
1006h	0	Synchronous communicatio n cycle	Synchronous communication cycle	U32	RW	NO	0

The 1006h object describes the SYNC synchronization message

synchronization cycle, the units is: μ s.

6. Object 1009h: Hardware version

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
1009h	0	Hardware version	Hardware version	U16	RO	NO	According to the factory hardware settings

The 1009h object describes the SSD2505PC factory hardware

version.

7. Object 100Ah: Software version

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
100Ah	0	Software version	Software version	U16	RO	NO	According to the factory software settings

The 100Ah object describes the SSD2505PC factory software

version.

8. Object 1014h: COB-ID Emergency Object

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mappi ng	Default
1014h	00	EMNC emergency message COB	EMNC emergency message COB	U32	RW	NO	0x80+Node- ID

The 1014h object defines the COB-ID of the EMCY message.

15. Object 1017h: Producer Heartbeat Time

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
1017h	00	Producer heartbeat time	Producer heartbeat time interval units ms	U16	RW	NO	0

The 1017h object describes the producer heartbeat interval in milliseconds, and if it is 0, it does not work. If it isn't 0, it will generate a heartbeat message according to the time period.

5.2 SDO (Process data object)

1. Object 1200h: Se rver SDO Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
12001	00	Sub-Index number	Sub-Index number	U8	RO	NO	2
12001	01	COB-ID (slave	COB-ID (slave receive)	U32	RO	NO	600h+Node-ID

		receive)					
02	02	COB-ID	COB-ID	1122	PO	NO	580h Noda ID
	02	(slave send)	(slave send)	U32	RO	NO	Joon+Node-ID

The 1200h object describes the COB-ID of the SDO message.

5.3 PDO (Service data object)

1. Object 1400h: RPDO1 CommunicationParameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
	00	Sub-Index number	Sub-Index number	U8	RO	NO	5
	01	COB-ID	COB-ID identifier	U32	RO	NO	200+ Node-ID
1400b	02	Transport type	Transport type	U8	RW	NO	FFh
140011	03	Prohibited time	Prohibited time	U16	RW	NO	0
	04	Reserved	Reserved	U8	RW	NO	0
	05	Event timer	Event timer	U16	RW	NO	0

1400h object describes the RPDO message communication parameters, SSD2505PC support 4 RPDO, COB-ID configuration is as follows.

1400h	200+ Node-ID
1401h	300+ Node-ID
1402h	400+ Node-ID
1403h	500+ Node-ID

2. Object 1800h: TPDO1 Communication Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
1800h	00	Sub-Index number	Sub-Index number	U8	RO	NO	5

01	COB-ID	COB-ID identifier	U32	RO	NO	180+ Node-ID
02	Transport type	Transport type	U8	RW	NO	FFh
03	Prohibited time	Prohibited time	U16	RW	NO	0
04	Reserved	Reserved	U8	RW	NO	0
05	Event timer	Event timer	U16	RW	NO	0

1800h object describes the TPDO message communication parameters, SSD2505PC support 4 TPDO, COB-ID configuration is as follows.

1800h	180+ Node-ID
1801h	280+ Node-ID
1802h	380+ Node-ID
1803h	480+ Node-ID

3. Object 1600h: RPDO1 MappingParameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
	00	Sub-Index number	Sub-Index number	U8	RO	NO	1
	01	Mapping 1	Mapping to 6040h register	U32	RW	NO	60400010h
1600h	02	Mapping 2	Not mapped	U32	RW	NO	-
	03	Mapping 3	Not mapped	U32	RW	NO	-
	04	Mapping 4	Not mapped	U32	RW	NO	-

The 1600h object describes the mapping parameters of RPDO1.

4. Object 1601h: RPDO2 Mapping Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
1601h	00	Sub-Index number	Sub-Index number	U8	RO	NO	0

01	Mapping 1	Mapping to 6040h register	U32	RW	NO	-
02	Mapping 2	Mapping to 6060h register	U32	RW	NO	-
03	Mapping 3	Not mapped	U32	RW	NO	-
04	Mapping 4	Not mapped	U32	RW	NO	-

The 1601h object describes the mapping parameters of RPDO2.

15. Object 1602h: RPDO3 Mapping Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
1602h	00	Sub-Index number	Sub-Index number	U8	RO	NO	0
	01	Mapping 1	Mapping to 6040h register	U32	RW	NO	-
	02	Mapping 2	Mapping to 607Ah register	U32	RW	NO	-
	03	Mapping 3	Not mapped	U32	RW	NO	-
	04	Mapping 4	Not mapped	U32	RW	NO	-

The 1602h object describes the mapping parameters for RPDO3.

15. Object 1603h: RPDO4 Mapping Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
	00	Sub-Index number	Sub-Index number	U8	RO	NO	0
	01	Mapping 1	Mapping to 6040h register	U32	RW	NO	-
1603h	02	Mapping 2	Mapping to 60FFh register	U32	RW	NO	-
	03	Mapping 3	Not mapped	U32	RW	NO	-
	04	Mapping 4	Not mapped	U32	RW	NO	-

The 1603h object describes the mapping parameters for RPDO4.

15. Object 1A00h: TPDO1 Mapping Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
	00	Sub-Index number	Sub-Index number	U8	RO	NO	0
	01	Mapping 1	Mapping to 6041h register	U32	RW	NO	-
1A00h	02	Mapping 2	Not mapped	U32	RW	NO	-
	03	Mapping 3	Not mapped	U32	RW	NO	-
	04	Mapping 4	Not mapped	U32	RW	NO	-

The 1A00h object describes the mapping parameters for TPDO1.

15. Object 1A01h: TPDO2 Mapping Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
	00	Sub-Index number	Sub-Index number	U8	RO	NO	0
	01	Mapping 1	Mapping to 6041h register	U32	RW	NO	_
1A01h	02	Mapping 2	Mapping to 6061h register	U32	RW	NO	-
	03	Mapping 3	Not mapped	U32	RW	NO	-
	04	Mapping 4	Not mapped	U32	RW	NO	-

The 1A01h object describes the mapping parameters of TPDO2.

15. Object 1A02h: TPDO3 Mapping Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
1A02h	00	Sub-Index number	Sub-Index number	U8	RO	NO	0
	01	Mapping 1	Mapping to 6041h register	U32	RW	NO	-
	02	Mapping 2	Mapping to 6064h register	U32	RW	NO	-
	03	Mapping 3	Not mapped	U32	RW	NO	-

	04	Mapping 4	Not mapped	U32	RW	NO	-
--	----	-----------	------------	-----	----	----	---

The 1A02h object describes the mapping parameters of TPDO3.

15. Object 1A03h: TPDO4 Mapping Parameter

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mapping	Default
	00	Sub-Index number	Sub-Index number	U8	RO	NO	0
	01	Mapping 1	Mapping to 6041h register	U32	RW	NO	-
1A03h	02	Mapping 2	Not mapped	U32	RW	NO	-
	03	Mapping 3	Not mapped	U32	RW	NO	-
	04	Mapping 4	Not mapped	U32	RW	NO	-

The 1A03h object describes the mapping parameters of TPDO4.

5.4 Drive description object

The SSD2505PC defines several drive description objects from 603Fh to 60FFh according to the CiA 402 protocol, as described in Appendix 1 for details.

5.5 The driver subdefined object

The SSD2505PC defines objects from 2000h to 2039h to implement drive functions, as described in Appendix 1 for a detailed description.

6 Alarm diagnose

SSD2505PC driver has four kinds of alarm information, the alarm

indicator flashing several times according to the alarm code, the specific alarm code and handle methods as shown in Table 6.1.

Alarm code	Alarm message	Indicator	Reset
E1 001	Overcurrent or short	Elech en er	Lock machine / Re-power
EITI: 0X01	circuit between phases	Flash once	reset
E_{m}	Power supply voltage	Flash turica	Lock machine /
EI12: 0X02	high	Flash twice	Automatic reset
Em.2 002	Derver gunnly veltege leve	Elach 2 times	Lock machine /
EII3: 0x03	Power suppry voltage low	Flash 5 times	Automatic reset
Em 4 0::04	EEPROM Read/write	Elach 4 times	Deset eveilable
EI14: 0X04	error	Flash 4 times	Reset available
Err4: 0x05	Position variance	Flash 5 times	Re-power reset

Table 6.1 Alarm codes and treatment measures

7 Version history

1. V1.0 Initial Release

Appendix 1 CANopen Object Dictionary List

Index	Sub index	Name	Introductions	Туре	Atrr.	PDO mappi ng	Default		
	CiA 301 basic communication parameters group								
1000h	00	Device type	This device supports CIA301, CIA402	U32	RO	NO	0x00040192		
1001h	00	Error register	Drive current error state	U8	RO	NO	0		
	00	Sub-Index number	Sub-Index number	U8	RO	NO	4		
1003h	01~04	Error memory	The drive recent emergency message error, supporting five error storage units;	U32	RO	NO	0		
1005h	00	Synchronous messages COB identifier	Synchronous messages COB identifier	U32	RW	NO	0x80		

1006h	00	Synchronous	Set synchronization cycle, the unit:	U32	RW	NO	0		
		communication cycle	μs						
1009h	00	Hardware version	Hardware version	U16	RO	NO	-		
100Ah	00	Software version	Software version	U16	RO	NO	-		
1014h	00	EMNC emergency message COB	EMNC emergency message COB	U32	RW	NO	0x80		
1017h	00	Producer heartbeat time	Producer heartbeat time interval units ms	U16	RW	NO	0		
	Factory customized parameter								
2000h	00	Drive node number	Can be set by switch and 0x2008 register	U16	RO	YES	-		
2001h	00	Motor State register	The drive controls the motor motion state 0: motor stationary; 1: motor running;	U16	RO	YES	0		
2002h	00	Motor current speed	The current speed of the motor;	I16	RO	YES	0		
2003h	00	Input signal status	7 input signal level status Bit0 ~ Bit7: PU, DRX0 ~ X4 input level status;	U16	RO	YES	0		
2004h	00	Output signal status	3 output signal level status Bit0 ~ Bit2: Y0 ~ Y2 output status;	U16	RO	YES	0		
2005h	00	Pulse direction level select	Value - RMS value (peak) lock machine current 0: Pulse Sign; 1: Pulse /Sign; 2: /Pulse Sign; 3: /Pulse /Sign;	U16	RW	YES	0		
2006h	00	Microstep setting	Address—Microstep 0—400 (Pu/rev); 1—800 (Pu/rev); 2—1600 (Pu/rev); 3—3200 (Pu/rev); 4—6400 (Pu/rev); 5—12800 (Pu/rev); 6—25600 (Pu/rev); 7—51200 (Pu/rev); 8—1000 (Pu/rev); 10—4000 (Pu/rev); 11—5000 (Pu/rev);	U16	RW	YES	8		

			12—8000 (Pu/rev);				
			13—10000 (Pu/rev);				
			14—20000 (Pu/rev);				
			15—40000 (Pu/rev);				
20071	00	Open/closed loop	0 : Closed-loop;	UIC	DW	VEC	0
2007h	00	operation mode	1 : Open loop;	U16	RW	YES	0
			0~31 : Undefined				
2008h	00	Customize drive node	32~127 Use it when node numbers	U16	RW	YES	0
		number	greater than 31;				
		Customiza	0: 125 Kbit/s				
20001-	00		1: 100 Kbit/s	1116	DW	VEC	0
2009n	00		2: 50 Kbit/s	016	ĸw	IES	0
		rate high bit	3: 25 Kbit/s				
200.41	00		0: Sync	1116	DW	VEC	0
200An	00	Sync to EEPROM	1: No Sync	010	ĸw	IES	0
200Dh	00	Overnegition sten mode	0: normal stop	U14	DW	VES	0
20060	00	Overposition stop mode	1: emergent stop	010	ĸw	IES	0
		Dus control mode /	0: bus control				
2000	00	pulse direction (P / D) control mode selection	1: external pulse direction (P / D)	U16	RW	VEC	0
200Ch	00		control			YES	
			2: Double-pulse control				
			0: When the MF signal is active, the				
20051	0.0	When the MF signal is	brake signal is valid;		DU	THE	0
200Dh	00	active, the brake signal handle setting	1: When the MF signal is active, the	010	RW	TES	0
			brake signal is not valid;				
			The initial speed of the moving				
200Eh	00	Starting speed	start; Unit r / min; range 2-300r /	U16	RW	YES	5r/min
			min;				
200F	0.0		0 : Release;	THE	DUV	1/DG	0
200Fh	00	Motor enable / Release	1 : Enabled;	U16	RW	YES	0
20101	0.0	D	0 : Invalid;	THE	DUU	MDG	0
2010h	00	Parameter reset	1 : Reset the factory parameters;	U16	RW	YES	0
20111	00		0 : Invalid;	TT1C	DIV	MEG	0
2011h	00	Fault reset command	1 Fault reset;	U16	RW	YES	0
			Used to clear the current position in				
20125	00	Comment and iting along	absolute position mode	UIC	DW	VEC	0
2012h	00	Current position clear	0: invalid;	016	RW	IES	0
			1: the current position is cleared;				
		Abaalata / Dalating	0: relative position;				
2013h	00	Absolute / Relative	1: absolute position;	U16	l6 RW	YES	0
		positions	Note: Valid in multi-position mode;				
20201-	00	Cub Indee much on	Cub Index much an	U1C	DO	NO	16
2030n	00	Sub-index number	Sub-Index number	010	кU	NU	10

01	Input terminal active level	 Bit0: PU terminal control bit; Bit1: DR terminal control bit; Bit2: Input terminal X0 control bit; Bit3: Input terminal X1 control bit; Bit4: Input terminal X2 control bit; Bit5: Input terminal X3 control bit; Bit6: Input terminal X4 control bit; Bit7~Bit15: reserved 0: default; 1: level reversal; The drive default input terminal level rising edge is valid; 	U16	RW	YES	0
02	Input terminal PU function selection	0: undefined; 1: origin signal;	U16	RW	YES	0
03	Input terminal DR function selection	 2: positive position limit signal; 3: negative position limit signal; 	U16	RW	YES	0
04	Input terminal X0 function selection	 4: motor enable signal; 5: motor release signal; 	U16	RW	YES	0
05	Input terminal X1 function selection	6: alarm clear signal;7: function code to restore the	U16	RW	YES	0
06	Input terminal X2 function selection	factory signal; 8: stop signal;	U16	RW	YES	0
07	Input terminal X3 function selection	9: emergency stop signal; 10: position mode forward	U16	RW	YES	0
08	Input terminal X4 function selection	 movement; 11: position mode reverse movement; 12: speed mode forward movement; 13: speed mode reverse movement; 14: back to origin enable signal; 15: PT enable signal; 16: PIN0; 17: PIN1; 18: PIN2; 19: PIN3; 20: PIN4; Note: When using external pulse control mode, set the PU and DR functions to 0 to avoid accidental effects. 	U16	RW	YES	0

	0C	Output terminal active level	 Bit0: Output terminal Y0 control bit; Bit1: Output terminal Y1 control bit; Bit2: Output terminal Y2 control bit; Bit3: Output terminal Y3 control bit; 0: default; 1: level reversal; The drive default input terminal level rising edge is valid; 	U16	RW	YES	0
	0D	Output terminal Y0 terminal function selection	0: undefined 1: alarm signal; 2: drive status signal;	U16	RW	YES	0
	0E	Output terminal Y1 terminal function selection	 3: back to origin completion signal; 4: position ready signal; 5: PT mode signal; 	U16	RW	YES	0
	0F	Output terminal Y2 terminal function selection	6: POUT0;7: POUT1;8: POUT2;	U16	RW	YES	0
2031h	00	Multi-position operation mode	0: basic mode; 1: trigger mode;	U16	RW	YES	0
2032h	00	Multi-position cycle mode	0: single time run; 1: cycle operation;	U16	RW	YES	0
	00	Number of sub-indexs	Number of sub-indexs	U16	RO	NO	16
2033h	01~16	01 position section JPT number 02 position section JPT number 15 position section JPT number 16 position section JPT number	JPT (jump point): After the current position segment is completed, it jumps to the segment number of the next position. If the JPT number of the position segment 01 is set to 8, then after the position 01 is completed, it will jump to the position segment 08 run; 0: do not jump; 1 to 16: next running position segment;	U16	RW	YES	0
2024h	00	Number of sub-indexs	Number of sub-indexs	U16	RO	NO	16
203411	01~16	The total number of pulses of PT segment	The total number of pulses of position mode (including	U32	RW	YES	0

		(segment 1 to 16)	acceleration, constant speed and deceleration stage)				
	00	Number of sub-indexs	Number of sub-indexs	U16	RO	NO	16
2035h	01~16	PT Position segment speed (Segment 1~ 16)	Motion speed	U16	RW	YES	0
	00	Number of sub-indexs	Number of sub-indexs	U16	RO	NO	16
2036h	01~16	PT Position segment acceleration / deceleration time (Segment 1~ 16)	Acceleration / deceleration time	U16	RW	YES	0
	00	Number of sub-indexs	Number of sub-indexs	U16	RO	NO	16
2037h	01~16	PT Position segment running direction (Segment 1~ 16)	Running direction	U16	RW	YES	0
2038h	00	Number of sub-indexs	Number of sub-indexs	U16	RO	NO	16
	01~16	PT Position segment waiting time (Segment 1~ 16)	The time interval after the completion of one position segment and the next position segment; Unit: ms;	U16	RW	YES	0
	00	Number of sub-indexs	Number of sub-indexs	U16	RO	NO	16
2039h	01~16	The output terminal value sets at the beginning of the segment motion (Segment 1~ 16)	 Bit0 ~ Bit7: POUT output status at the beginning of a position segment operation; Bit0: POUT0 state; Bit1: POUT1 state; Bit2: POUT2 state; 0: low level output; 1: high level output; 1: high level output; Bit8 ~ Bit15 POUT output status after one position segment is finished; Bit8: POUT0 state; Bit9: POUT1 state; Bit10: POUT2 state; 0: low level output; 	U16	RW	YES	0

			1: high level output;				
2040h	00	Encoder resolution	0: 1000 lines; 1: 44000 lines;	U16	RW	YES	0
2041h	00	Pulse input frequency limit	0~255	U16	RW	YES	5
2042h	00	Percentage of closed-loop current	0~150	U16	RW	YES	70
2043h	00	Percentage of open-loop current	0~100	U16	RW	YES	40
2044h	00	Lock current percentage	0~100	U16	RW	YES	40
2045h	00	Lock current time	100~500ms	U16	RW	YES	100
2046h	00	Variances alert thresholds	0~20000	U16	RW	YES	4000
2047h	00	Position ready signal output control mode and threshold	1~4000	U16	RW	YES	10
2048h	00	Speed smoothing strength	0~1024	U16	RW	YES	5
2049h	00	Position proportional factor	1~256	U16	RW	YES	16
204Ah	00	Speed proportional factor	1~256	U16	RW	YES	16
204Bh	00	Speed feedforward coefficient	1~200	U16	RW	YES	162
204Ch	00	Current loop proportional coefficient	0~30000	U16	RW	YES	8000
204Dh	00	Current loop integral coefficient	0~1000	U16	RW	YES	48
204Eh	00	Encoder feedback filter coefficients	0~1024	U16	RW	YES	358
204Fh	00	Positioning accuracy	1~200	U16	RW	YES	10
2050h	00	Closed - loop control algorithm	0~1	U16	RW	YES	0
2051h	00	High-speed adjustment factor (ea limit)	0~65535	U16	RW	YES	15360
2052h	00	Torque adjustment factor (ea)	1~50	U16	RW	YES	16
2053h	00	Speed node 1	1~50	U16	RW	YES	10

2054h	00	Position proportional factor 1	0~65535	U16	RW	YES	32
2055h	00	Speed proportional factor 1	0~65535	U16	RW	YES	320
2056h	00	Speed node 2	1~50	U16	RW	YES	15
2057h	00	Position proportional factor 2	0~65535	U16	RW	YES	33
2058h	00	Speed proportional factor 2	0~65535	U16	RW	YES	320
2059h	00	Speed node 3	1~50	U16	RW	YES	20
205Ah	00	Position proportional factor 3	0~65535	U16	RW	YES	35
205Bh	00	Speed proportional factor 3	0~65535	U16	RW	YES	320
205Ch	00	Speed node 4	1~50	U16	RW	YES	30
205Dh	00	Position proportional factor 4	0~65535	U16	RW	YES	38
205Eh	00	Speed proportional factor 4	0~65535	U16	RW	YES	384
205Fh	00	Speed node 5	1~50	U16	RW	YES	40
2060h	00	Position proportional factor 5	0~65535	U16	RW	YES	39
2061h	00	Speed proportional factor 5	0~65535	U16	RW	YES	512
2062h	00	Speed node 6	1~50	U16	RW	YES	46
2063h	00	Position proportional factor 6	0~65535	U16	RW	YES	40
2064h	00	Speed proportional factor 6	0~65535	U16	RW	YES	640
2065h	00	Static position ratio	0~65535	U16	RW	YES	32
2066h	00	Static speed ratio	0~65535	U16	RW	YES	320
2067h	00	PU / DR differential signal filtering time	PU / DR differential signal filter time, Unit: ms	U16	RW	YES	10
2068h	00	X0/X1 differential signal filtering time	X0/X1 differential signal filter time, Unit: ms	U16	RW	YES	10
2069h	00	X2/X3 differential signal filtering time	X2/X3 differential signal filter time, Unit: ms	U16	RW	YES	10

206 A h	00	X4 differential signal	X4 differential signal filter time,	1114	DW	VES	10	
206An	00	filtering time	Unit: ms	016	KW	IES	10	
CiA 402 parameter group								
603Fh	00	Drive fault code	The manufacturer's custom drive error condition is the same as the lower 16 bits of the 1003h register. 0000h: no error; FF01h: overcurrent; FF02h: overvoltage; FF03h: undervoltage; FF04h: EEPROM read and write errors; FF05h: position tolerance alarm;	U16	RO	YES	0	
6040h	00	Control word	Control the drive working state; Control the drive in different modes;	U16	RW	YES	0	
6041h	00	Status word	Reflect the drive working state; Reflect the different working state in different modes of the drive;	U16	RO	YES	0	
605Ah	00	Quick stop control register	the drive handle method after quick stop command:0: release motor;1: normal stop;2: emergency stop;	I16	RW	NO	0	
605Bh	00	Shutdown control register	the drive handle method afterShutdown command:0: Emergency stop, release motor;1: normal stop, release the motor;	I16	RW	NO	0	
605Ch	00	Disable Operation control register	the drive handle method afterDisable Operation command:0: Emergency stop, release motor;1: normal stop, release the motor;	I16	RW	NO	0	
605Dh	00	Halt control register	 the drive handle method after halt command: 0: normal stop, maintain Operation Enabled status; 1: emergency stop, maintain Operation Enabled state; 	I16	RW	NO	0	
6060h	00	Running mode control register	 -1: Multi-position mode; 0: undefined; 1: position mode; 3: speed mode; 6: back to origin mode; 	18	RW	YES	0	

6061h	00	Running mode status register	 -1: Multi-position mode; 0: undefined; 1: position mode; 3: speed mode; 6: back to origin mode; 	18	RO	YES	0
6064h	00	Drive actual location register	Drive actual position, unit: pul	132	RW	YES	0
607Ah	00	Total number of pulses	The total number of running pulses for position mode (including acceleration, constant speed and deceleration) Range: -1000000 ~ 1000000;	U32	RW	YES	5000
6081h	00	Maximum speed	The maximum speed of position mode; Low microstep setting, the maximum speed up to 3000r / min; high microstep settings, the output frequency up to 200KHz, range: 5-3000r / min;	U16	RW	YES	120 r/min
6083h	00	Acceleration time	Acceleration time; Range: 0-2000ms;	U16	RW	YES	100ms
6084h	00	Deceleration time	Deceleration time Range: 0-2000ms;	U16	RW	YES	100ms
60FFh	00	Maximum speed	The maximum speed of speed mode; Low microstep setting, the maximum speed up to 3000r / min; high microstep settings, the output frequency up to 200KHz, range: -3000-3000r / min;	U16	RW	YES	0
6098h	00	Back to the origin mode	0: forward position limit + origin mode; 1: reverse position limit + origin mode 2: forward limit mode; 3: reverse limit mode;	U8	RW	YES	0
	00	Number of sub-indexs	Number of sub-indexs	U8	RO	NO	2
6099h	01	Back to the origin speed	The speed for searching origin point; Range: 5-3000r/min;	U16	RW	YES	120 r/min
	02	Back to the origin query speed	The speed for back to origin point after found it; Range: 5-3000r/min;	U16	RW	YES	60 r/min

		Back to the origin	Back to the origin acceleration /				
609Ah	00	acceleration/deceleratio	deceleration time;	U16	RW	YES	100ms
		n time	Range: 30-2000ms				
607Ch	00	Origin compensation	Origin compensation value:	I32	RW	VEC	0
		value	Range: -1000000~1000000			IES	

Note: U16 is an unsigned 16-bit; I16 represents a signed 16-bit; U32 represents an unsigned 32-bit; I32 represents a signed 32-bit;